首页> 外文OA文献 >Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms
【2h】

Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms

机译:matrix product Operators,matrix product states和ab initio Density   矩阵重整化组算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current descriptions of the ab initio DMRG algorithm use two superficiallydifferent languages: an older language of the renormalization group andrenormalized operators, and a more recent language of matrix product states andmatrix product operators. The same algorithm can appear dramatically differentwhen written in the two different vocabularies. In this work, we carefullydescribe the translation between the two languages in several contexts. First,we describe how to efficiently implement the ab-initio DMRG sweep using amatrix product operator based code, and the equivalence to the originalrenormalized operator implementation. Next we describe how to implement thegeneral matrix product operator/matrix product state algebra within a purerenormalized operator-based DMRG code. Finally, we discuss two improvements ofthe ab initio DMRG sweep algorithm motivated by matrix product operatorlanguage: Hamiltonian compression, and a sum over operators representation thatallows for perfect computational parallelism. The connections andcorrespondences described here serve to link the future developments with thepast, and are important in the efficient implementation of continuing advancesin ab initio DMRG and related algorithms.
机译:从头开始DMRG算法的当前描述使用两种表面上不同的语言:较旧的重归一化组语言和重新归一化的运算符,以及较新的矩阵乘积状态和矩阵乘积运算符的语言。当使用两种不同的词汇表编写时,同一算法可能会出现截然不同的情况。在这项工作中,我们在几种情况下仔细描述了两种语言之间的翻译。首先,我们描述了如何使用基于矩阵乘积运算符的代码有效地实现从头开始的DMRG扫描,以及与原始重新规范化的运算符实现的等效性。接下来,我们描述如何在基于纯重归一化运算符的DMRG代码中实现通用矩阵乘积运算符/矩阵乘积状态代数。最后,我们讨论了由矩阵乘积运算符语言驱动的从头开始的DMRG扫描算法的两个改进:汉密尔顿压缩和允许完美计算并行性的算符表示和。此处描述的连接和对应关系将过去的发展与过去联系在一起,对于有效地实现从头开始的DMRG和相关算法的持续发展非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号